通用文本格式 https://github.com/aplmikex/deduplication_mnbvc
问答语料格式 https://github.com/wanicca/WikiHowQAExtractor-mnbvc
代码语料格式 https://github.com/LinnaWang76/githubcode_extractor_mnbvc
多轮对话语料格式 https://github.com/pany8125/ShareGPTQAExtractor-mnbvc
论坛语料格式 https://github.com/aplmikex/forum_dialogue_mnbvc
平行语料格式 https://github.com/liyongsea/parallel_corpus_mnbvc
多模态语料 https://huggingface.co/datasets/wanng/example_mmdata_mnbvc
未来所有MNBVC语料都会统一格式,请提交数据的同学都执行下格式检查工具:DataCheck_MNBVC
对于语料格式的每个jsonl文件,其大小略大于500MB。
时间字段所有语料格式中都有,必填,代表本语料出现的最早时间,统一采用字符串的 yyyymmdd 格式,具体规则如下:
补充:补零4位python代码只需要加上:04d为 f'{$year:04d}',如需将补零4位字符串转换为int,python中 int() 函数会自动识别转换,如 int('0001') 则为整数 1。
1.对于每一个文件,时间格式为yyyymmdd,具体参考前面的内容,他的json结构层次如下:
{ '文件名': '文件.txt', '是否待查文件': False, '是否重复文件': False, '文件大小': 1024, 'simhash': 0, '最长段落长度': 0, '段落数': 0, '去重段落数': 0, '低质量段落数': 0, '段落': [], '扩展字段': json_str, '时间': str(yyyymmdd), }
将每一行为一个段落,段落的json结构层次如下:
{ '行号': line_number, '是否重复': False, '是否跨文件重复': False, 'md5': md5, '内容': line, '扩展字段': json_str }
2.结果示例:
{ '文件名': '文件.txt', '是否待查文件': False, '是否重复文件': False, '文件大小': 1024, 'simhash': 0, '最长段落长度': 0, '段落数': 0, '去重段落数': 0, '低质量段落数': 0, '段落': [ { '行号': 1, '是否重复': False, '是否跨文件重复': False, 'md5': 'md5hash1', '内容': '这是第一段文字。', '扩展字段': json_str }, '扩展字段': json_str, '时间': str(yyyymmdd), ] }
1.每行是一条问答数据,对应一个WikiHow词条页面。
2.对于每一个问答数据,其最高层次结构如下。
{ "id":123456, "问":"写一个超短小说", "答":"他们相遇,又别离。岁月如梭,情感却不减。", "来源":"wikihow", "元数据":{ "create_time":"20230511 15:56:03", "问题明细":"", "回答明细":"", "扩展字段":"" }, "时间": str(yyyymmdd), }
3.在wikihow语料中,“回答明细”是一个列表,结构层次如下:
[ { "回答": "完整回答文本,包含方法、提示、注意事项", "简要回答": "回答的摘要文本,来自WikiHow的页面开头信息,概括了页面的主要内容", "结构": {} } ]
4.每个回答除了回答文本、简要回答文本以外,还有可供参考使用的结构信息,结构如下。
"结构": { "方法":[], "小提示":[], "注意事项":[] }
5.方法内部的结构包括编号、标题、步骤,每个步骤包括自己的编号、标题、描述。
6.小提示、注意事项为字符串列表。
7.结果示例:
{ "id": 0, "问": "如何在PS3上玩PS2游戏", "答": "1. 了解基础知识 ...", "来源": "来源", "时间": str(yyyymmdd), "元数据": { "create_time": "20230517 06:47:18", "问题明细": "...", "回答明细": { "回答": "...", "简要回答": "如果你的PS3游戏机的机型在硬件上兼容PS2光盘,那么你就可以在PS3上正常地玩PS2的游戏。尽管存档这些游戏需要额外的步骤,但是一旦你完成相关的游戏设置,很快你就可以在PS3上玩PS2游戏啦。", "结构": { "方法": [ { "编号": 1, "标题": "了解基础知识", "步骤": [ { "编号": 1, "标题": "查明你的PS3是否具有反向兼容性。", "描述": "PS3游戏机经历了一系列的更新升级和改变。尽管有些版本的PS3控制台可用于玩PS2游戏,但是并不是所有版本都能够兼容。..." }, { "编号": 2, "标题": "像往常那样,插入游戏光盘。", "描述": "PS2光盘插入光驱的方法和PS3光盘相同。一旦插入光盘,无需其它动作指令或协助,PS3就会自动识别并载入光盘内容。 接着,你就可以玩你想玩的游戏了。" } ] } ], "小提示": ["如果你的PS3控制台不兼容,那么可以尝试从Playstation在线商店下载PS2版本游戏。遇到这种情况时,你需要购买一个新游戏,而不是使用旧版本游戏。但在兼容的控制台上也可以玩旧版本游戏。"], "注意事项": ["值得注意的是,有些PS2游戏只能部分兼容于PS3设备,所以在玩游戏的过程中可能遭遇各种问题。以下将列出部分于PS3设备的游戏: 生死极速 魔力女战士 火爆狂飙 ..."] } } } }
1.每行是一个文本的数据,对应一个代码仓库里的文本文件。
2.对于每一行数据,其最高层次结构如下。
{ "来源":"github", "仓库名":"esbatmop/MNBVC", "path":"/main/README.md", "文件名":"README.md", "ext": "md", "size":123456, "原始编码":"GBK", "md5":"文件的md5值", "text": "文件的内容,utf8格式", "时间": str(yyyymmdd), }
3.结果示例:
{ "来源":"github", "仓库名":"esbatmop/MNBVC", "path":"/main/README.md", "文件名":"README.md", "ext": "md", "size":123456, "原始编码":"GBK", "md5":"文件的md5值", "text": "文件的内容,utf8格式", "时间": str(yyyymmdd), }
1.每行是一个文本的数据,对应一个代码仓库里的一个文本文件的变更。
2.对于每一行数据,其最高层次结构如下。
{ "来源":"github", "仓库名":"esbatmop/MNBVC", "path":"/main/README.md", "文件名":"README.md", "ext": "md", "index": "abc1234..def5678", "message": "Update with new content", "diff": "@@ -1,3 +1,4 @@ This is the first line. -This is the second line. +This line has been modified. @@ -5,2 +6,3 @@ +This line has been modified again. +This is another new line added.", "原始编码":"GBK", "md5":"差异的md5值", "时间": str(yyyymmdd), '扩展字段': "json_string", }
1.每行对应一对问答,包含问答文本,以及同一会话下多轮问答的唯一标识和序号。
2.对于每一个问答数据,其最高层次结构如下。
{ "id":"82b2834abe2ed41a26b6b06317114f8f", "问":"写一个超短小说", "答":"他们相遇,又别离。岁月如梭,情感却不减。", "来源":"ShareGPT", "时间": str(yyyymmdd), "元数据":{ "create_time":"20230511 15:56:03", "问题明细":"\"from\": \"human\"", "回答明细":"\"from\": \"gpt\"", "扩展字段":"{\"会话\": 1, \"多轮序号\": 1, \"解析模型\": gpt4}" } }
3.jsonl文件中每一行的json基本KV说明。
KEY | VALUE说明 |
---|---|
id | 每一对问答的唯一标识,使用json串的md5作为唯一标识id |
问 | 问的文本 |
答 | 答的文本 |
来源 | 固定为'ShareGPT' |
元数据 | 包含创建时间、问题明细、回答明细、扩展字段 |
4.元数据中每一项的KV说明。
KEY | VALUE说明 |
---|---|
create_time | 问答创建时间,格式为%Y%m%d %H:%M:%S |
问题明细 | 原始语料中问的来源,例如 “from”: “human” |
回答明细 | 原始语料中答的来源,例如 “from”: “gpt” |
扩展字段 | 包含会话的唯一标识和本条在会话中的序号,以及解析模型 |
5.扩展字段中每一项的KV说明。
KEY | VALUE说明 |
---|---|
会话 | 会话的唯一标识,例如 “会话”: “yOKd88p” |
多轮序号 | 本条在会话中的序号,例如 “多轮序号”: 1 |
解析模型 | 用于标识原始语料的来源,例如 “解析模型”: “gpt4” |
其他。。等等 | 语料中问答相关的其他补充信息字段 |
6.注意:如果有问没答,保持答为空。如果只有答案没有问,直接丢弃答。
7.结果示例:
{ "id": "82b2834abe2ed41a26b6b06317114f8f", "问": "Can you make me a Shakespearean script about a girl who has tummy troubles and can\u2019t fart not matter how hard she tries- so they think she is a witch", "答": "Sure, here's a Shakespearean script about a girl who c...", "来源": "ShareGPT", "时间": str(yyyymmdd), "元数据": { "create_time": "20230517 10:41:58", "问题明细":"\"from\": \"human\"", "回答明细":"\"from\": \"gpt\"", "扩展字段": "{ "会话": "yOKd88p", "多轮序号": 1, "解析模型": "gpt4" }" } }
1.每行是一个以一个主题,论坛针对该主题进行回复的对话。
2.对于每一个论坛主题对话,其最高层次结构如下。
{ "ID": 10000, "主题": "主题", "来源": "清华树洞", "回复": [], "时间": str(yyyymmdd), "元数据": { "发帖时间": "20200628 06:38:34", "回复数": 37, "扩展字段": "" } }
3.其中回复是关于该语料的回复的相关评论的字典的列表,其结构如下所示。
{ "楼ID": "abcdef", "回复": "", "扩展字段": "", }
4.主题是楼主的话,由于楼主如果只发了链接由于会被过滤掉,所以主题有可能是空字符串。
5.扩展字段会以字符串的格式给出,格式不完全固定,原始数据里面有什么就当前的内部格式如下所示,可以通过json.loads来解析。
元数据里面的扩展字段:
{ "标签": "label", "点赞数": 0, "原文": "", }
回复里面的扩展字段:
其中引用id代表回复的评论的那个的id,如果原始语料中只有回复某个人而没有具体回复哪条评论,引用ID置空,将只保留回复人。
(注:由于原始语料问题,引用人可能不能匹配在此回复之前的某个回复人)
{ "回复人": "等站", "回复时间": "", "引用ID": "abcde", "引用人": "等战", "点赞数": 1, "点踩数": 1, }
6.label代表这个帖代表什么类型的讨论。
7.原文是该语料的完整来源,如果我们代码解析出错可以在原文中自行提取。
8.结果示例:
{ "ID": 275957, "主题": "出一张今晚七点贝多芬专场作品音乐会的票,一楼18排4座,原价60出。", "来源": "北大树洞", "时间": str(yyyymmdd), "回复": [ { "楼ID": "1", "回复": "有意者可加洞主微信*", "扩展字段": "{\"回复人\": \"洞主\", \"引用人\": \"洞主\", \"回复时间\": \"20170924 13:54:21\"}" }, { "楼ID": "2", "回复": "搭车转,楼主优先。有要的留言啊", "扩展字段": "{\"回复人\": \"Alice\", \"引用人\": \"Alice\", \"回复时间\": \"20170924 14:31:48\"}" }, { "楼ID": "3", "回复": "已出", "扩展字段": "{\"回复人\": \"洞主\", \"引用人\": \"洞主\", \"回复时间\": \"20170924 17:17:50\"}" } ], "元数据": { "发帖时间": "20170924 13:53:31", "回复数": 3, "扩展字段": "{\"原文\": \"#p 275957 2017-09-24 13:53:31 1 3\\n出一张今晚七点贝多芬专场作品音乐会的票,一楼18排4座,原价60出。\\n\\n#c 1047150 2017-09-24 13:54:21\\n[洞主] 有意者可加洞主微信*\\n\\n#c 1047192 2017-09-24 14:31:48\\n[Alice] 搭车转,楼主优先。有要的留言啊\\n\\n#c 1047510 2017-09-24 17:17:50\\n[洞主] 已出\", \"点赞数\": 1}" } }
语料文件是多行 jsonl 格式,这是其中一行的样例(实际上一行即为一个json,不需要缩进打印):
{ "文件名": "Terraria-workshop-localization_test2.jsonl", "是否待查文件": false, "是否重复文件": false, "段落数": 17944, "去重段落数": 0, "低质量段落数": 0, "行号": 1, "是否重复": false, "是否跨文件重复": false, "it_text": "", "zh_text": "正在生成海洋沙", "en_text": "Generating ocean sand", "ar_text": "", "nl_text": "", "de_text": "", "eo_text": "", "fr_text": "Génération du sable de l'océan", "he_text": "", "ja_text": "", "pt_text": "Gerando areia do oceano", "ru_text": "Создание песка в океане", "es_text": "", "sv_text": "", "ko_text": "", "th_text": "", "other1_text": "", "other2_text": "", "id_text":"", "cht_text":"", "vi_text":"", "扩展字段": "{\"other_texts\": {\"cs\": \"Generování mořského písku\", \"pl\": \"Generowanie piasku morskiego\", \"hu\": \"Tengeri homok elhelyezése\", \"uk\": \"Генерація океанського піску\", \"tr\": \"Okyanus kumu üretme\"}}", "时间": "20240316", "zh_text_md5": "b656579704c6ca5acc29f2aa36159ce2" }